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Robustness of anthropogenically forced decadal
precipitation changes projected for the 21st century
Honghai Zhang 1,2 & Thomas L. Delworth2

Precipitation is characterized by substantial natural variability, including on regional and

decadal scales. This relatively large variability poses a grand challenge in assessing the

significance of anthropogenically forced precipitation changes. Here we use multiple large

ensembles of climate change experiments to evaluate whether, on regional scales, anthro-

pogenic changes in decadal precipitation mean state are distinguishable. Here, distinguish-

able means the anthropogenic change is outside the range expected from natural variability.

Relative to the 1950–1999 period, simulated anthropogenic shifts in precipitation mean state

for the 2000–2009 period are already distinguishable over 36–41% of the globe—primarily in

high latitudes, eastern subtropical oceans, and the tropics. Anthropogenic forcing in future

medium-to-high emission scenarios is projected to cause distinguishable shifts over 68–75%

of the globe by 2050 and 86–88% by 2100. Our findings imply anthropogenic shifts in

decadal-mean precipitation will exceed the bounds of natural variability over most of the

planet within several decades.
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Decadal variability in precipitation can have drastic impacts
on environment and society. For example, the notorious
1930s American Dust Bowl, a persistent decade-long

drought, is one of the most devastating environmental cata-
strophes that have stricken the United States during the past
century1–3. Projecting future decadal changes in precipitation—
particularly those caused by anthropogenic activities—have been
not only a longstanding goal for scientists but also of great
interest to the public. Decadal changes in precipitation are
dominated by internal climate variability (arising from natural
processes internal to the climate system and their interactions)4–
11 that is inherently unpredictable beyond a decade (owing to the
chaotic nature of the climate system)7, 12–15. This dominance of
unpredictable internal climate variability (noise) presents an
enormous challenge in the projection and assessment of anthro-
pogenically caused decadal changes in precipitation (signal)
owing to the weak signal-to-noise ratio. Nonetheless, projecting
and assessing anthropogenic decadal changes in precipitation are
of crucial importance for both scientific understanding and
practical applications (e.g., policy making) associated with climate
mitigation and adaptation.

In this work, we assess where and when regional-scale decadal
shifts in precipitation mean state that arise from anthropogenic
forcing can be robustly distinguished from the background of
unpredictable low-frequency (longer than a decade) internal
climate variability in future ensemble projections. We focus on
the mean state because anthropogenic shifts in mean state are
the most predictable component in climate change16. A shift in
precipitation mean state is defined as distinguishable when the
amplitude of the shift is outside the range of what could occur
from low-frequency internal climate variability (see Methods for
more details). Specifically, we address the following question:
On a decade by decade and grid box by grid box basis, which
projected shifts in precipitation mean state relative to the
1950–1999 climate can be distinguished from low-frequency
internal climate variability and attributed to anthropogenic
forcing? Answers to this question can inform policies on water
resource management, agricultural development, and food and
society security. To answer the above question, we examine the
evolution of decadal shifts in precipitation mean state after
calendar year 2000 (relative to the 1950–1999 climate), with a
focus on projections up to calendar year 2050. As to the decadal
shifts in precipitation mean state, we quantify the relative con-
tributions from anthropogenic forcing and natural climate

variability, the latter of which includes both unforced low-
frequency internal climate variability and forced natural (e.g.,
volcanic) variability. We show that, on regional scales, the
anthropogenically forced decadal shifts in precipitation mean
state are becoming progressively more distinguishable from
natural climate variability with each decade over more areas of
the globe.

Results
Model set-up. This analysis is enabled by a large set of simula-
tions (about 21000 model years in total) from two climate models,
the National Center for Atmospheric Research (NCAR) Com-
munity Earth System Model version 1 (CESM1)17 and the Geo-
physical Fluid Dynamics Laboratory (GFDL) Forecast-oriented
Low Ocean Resolution (FLOR) flux-adjusted model18. The
simulations include four multi-millennial preindustrial control
experiments and three state-of-the-art large model ensembles of
climate change experiments (Table 1). The control simulations—
with varying degrees of ocean–atmosphere coupling—are used to
assess low-frequency internal climate variability, while the large
model ensembles are used to estimate externally forced signals.
Conducted using a single climate model by prescribing the same
external forcing but different initial conditions, members of each
large model ensemble are composed of the same externally forced
signal and different internally generated variability. The average
of each large model ensemble provides a much-refined estimation
of the forced signal through the cancellation of random phases of
internal variability present in the various ensemble members.
Because of this unique advantage in estimating externally forced
signals, the large model ensemble is especially suitable for
extracting externally forced decadal changes in precipitation
(dominated by internal climate variability).

The three large model ensembles include a 35-member
ensemble (1921–2100) conducted with the NCAR CESM1, a
35-member ensemble and a 30-member ensemble (both
1941–2050) conducted with the GFDL FLOR. The two 35-
member ensembles (termed ALLFORC) are driven by observa-
tionally based estimates of historical forcing before 2005 and the
Representative Concentration Pathway (RCP) emission scenarios
after 2005 (RCP 8.5 for CESM1 and RCP 4.5 for FLOR); the 30-
member FLOR ensemble (termed NATURAL) is driven by
natural-only (solar and volcanic) forcing before 2005 and solar-
only forcing after 2005 (anthropogenic forcing held constant).

Table 1 Model simulations used in this study

Total number of
model years
analyzed

GFDL FLOR ~0.5° atmosphere/land and ~1° sea
ice/ocean
Fully coupled control Preindustrial forcing 3500 years 3400 (101–3500)
30-member NATURAL Natural historical forcing (solar

variations, volcanos) before 2005;
solar variability-only (quasi-11-year
cycle) afterwards

1941–2050 3030 (1950–2050)

35-member ALLFORC All historical forcing before 2005;
RCP4.5 afterwards

5 members: 1861–2100
30 members: 1941-2050

3535 (1950–2050)

NCAR CESM1 ~1° atmosphere, land, sea ice and
ocean
Fully coupled control Preindustrial forcing 2200 years 1801 (400–2200)
Atmosphere/land control Preindustrial forcing 2600 years 2600
Atmosphere/land/slab ocean control Preindustrial forcing 1000 years 1000
35-member ALLFORC All historical forcing before 2005;

RCP8.5 afterwards
1 member: 1850–2100
34 members: 1920-2100

5285 (1950–2100)
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Comparing the ALLFORC and NATURAL ensembles can help
further estimate the anthropogenically forced signals.

Both models simulate historical precipitation changes over
recent decades that are consistent with observations over most of
the global land (Supplementary Figures 1 and 2), thereby
increasing our confidence in the utility of these simulations for
assessing whether anthropogenic decadal changes in precipitation
mean state in future projections are distinguishable from natural
variability. For each decade after 2000, the mean state is defined
as the ensemble average within each large model ensemble over
10*N model years, where N is the ensemble size (10 years from
each ensemble member). For example, in a 35-member ensemble,
the decadal mean state for 2030–2039 is calculated as the
numerical average over 350 model years. The relatively large
model ensembles allow a more robust estimate of the mean state
for each decade.

Near-term projections. We analyze the distinguishability of
anthropogenic decadal shifts in precipitation mean state averaged
over five periods: January-to-December (annual), November-to-
April (NDJFMA), May-to-October (MJJASO), December-to-

February (DJF) and June-to-August (JJA), separately. Besides
precipitation, we have also conducted the same analysis for pre-
cipitation minus evaporation (PmE)—the net water flux at the
surface. We have found similar results for five periods and also
for PmE. Here we focus on the annual mean precipitation and
discuss the differences from the seasons (NDJFMA, MJJASO,
DJF, and JJA) and PmE as necessary.

The decadal evolution of projected shifts in annual precipita-
tion mean state (computed as the ensemble average) during
2000–2050 (relative to the 1950–1999 reference period) is similar
on the global scale between the CESM1 and FLOR ALLFORC
ensembles (Fig. 1 and Supplementary Figure 3). In response to
future anthropogenic warming (RCP 8.5 and 4.5), the global
precipitation mean state features a moistening trend in high
latitudes and tropics and a drying trend in subtropics to middle
latitudes. This global pattern has been largely explained by the
“wet get wetter, dry get drier” mechanism19: with the increase in
atmospheric moisture, large-scale atmospheric circulation will
converge more moisture into regions of climatological conver-
gence (wet get wetter), and diverge more moisture from regions
of climatological divergence (dry get drier). Other mechanisms
have been proposed in the tropics and subtropics. Over the
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Fig. 1 Decadal evolution of annual precipitation mean state and timing of distinguishability in precipitation changes. a–d decadal evolution of changes in
annual precipitation mean state (ensemble average, shading, mm day−1) relative to the 1950–1999 climate during 2000s (a, b) and 2040 s (c, d) in CESM1
ALLFORC RCP8.5 (a, c) and FLOR ALLFORC RCP4.5 (b, d). Time goes down, as denoted to the left of the figure (changes during 2010s, 2020s and 2030s
are shown in Supplementary Figure 3). Contours at intervals of 0.2 mm day−1 are labeled in gray, with dashes denoting negative precipitation changes.
Gray crosses in both columns denote that changes in precipitation mean state are not distinguishable from internal climate variability estimated from fully
coupled control simulations (see Methods for details on the distinguishability test); red stippling in (a, c) denotes changes in precipitation mean state are
not distinguishable from internal climate variability estimated from the atmosphere/land-only control simulation of CESM1. e, f timing of distinguishable
changes in precipitation mean state in CESM1 (e) and FLOR (f), defined as the first decade when precipitation changes become distinguishable and remain
so thereafter. The gray crosses in (e, f) means no distinguishability by 2050
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tropical oceans, precipitation changes follow the pattern of sea
surface temperature changes owing to its control on tropospheric
moist instability, with “warmer get wetter”20; in the subtropics,
precipitation response is driven primarily by the fast adjustment
to CO2 forcing, including land-sea warming contrast and direct
CO2 radiative forcing21, with a secondary contribution from the
slow poleward expansion of the Hadley Cell and subtropical dry
zone22, 23. All these mechanisms imply that these decadal shifts in
precipitation mean state result from anthropogenic forcing.
However, these decadal shifts can also be caused by low-
frequency (longer than a decade) internal climate variability. So,
where and when can the projected decadal shifts be distinguished
from internal climate variability and attributed to anthropogenic
forcing?

During the 2000s (i.e., 2000–2009) in both ALLFORC
ensembles (Fig. 1a–b), simulated shifts in precipitation mean
state are not distinguishable from low-frequency internal climate
variability over most of the globe. However, in certain regions
including the Arctic, Southern Ocean, eastern subtropical oceans,
equatorial Pacific and a few land regions over Eurasia, North/
South America and Antarctic, distinguishable shifts have already
emerged in the simulations. As expected, the area of distinguish-
able shifts in precipitation mean state increases with radiative
forcing. This increase occurs mainly over higher latitudes
(poleward of ~40°) and eastern subtropical ocean basins. By
2050, both models project distinguishable changes in precipita-
tion mean state over more than 65% of the globe (about 68% in
FLOR with 71% over land; 75% in CESM1 with 79% over land)
(Table 2). Without anthropogenic forcing, the FLOR NATURAL
ensemble (Supplementary Figure 3c) projects distinguishable
changes in precipitation mean state only in a few scattered
regions (including parts of the Arctic and the Southern Ocean),
which account for about 13% of the global area by 2050 (Fig. 2).
These distinguishable changes in the NATURAL ensemble are
likely associated with a small warming trend in future projections
owing to the difference in the imposed volcanic forcing between
the 1950 and 1999 reference period (observed volcanic emissions)
and the period after 2005 (no volcanic activity). The large
difference between ALLFORC and NATURAL ensembles indi-
cates that most of the distinguishable shifts in annual precipita-
tion mean state are attributable to anthropogenic forcing.

To quantify the time of emergence of anthropogenic shifts in
annual precipitation mean state (relative to the 1950–1999
period), we compute the decade when projected precipitation
changes first become distinguishable from natural climate
variability and remain so thereafter for at least two decades (see

Methods for more details). The CESM1 and FLOR ALLFORC
ensembles project a similar global pattern of the timing (Fig. 1e,
f). The earliest distinguishable signals (including the moistening
over high latitudes and equatorial Pacific and the drying over part
of subtropical oceans) are simulated during the 2000s over about
36–41% of the globe, with 43% of global land in FLOR and 40%
in CESM1 (Table 2 and Fig. 2). Over Eurasia and North America
north of about 40°N, southeast Asian monsoon region and most
of South America, both models project distinguishable shifts in
precipitation mean state during the decades between 2000 and
2040. By 2040, around 65% of the globe (~63% in FLOR and 67%
in CESM1) is projected to experience distinguishable shifts in
precipitation mean state (Table 2 and Fig. 2). Despite its stronger
RCP forcing, CESM1 in general projects a later timing than
FLOR, because it simulates a smaller ratio between the signal of
changes in precipitation mean state and the noise of internal
climate variability during the early decades of the 21st century
(Fig. 3a, b). However, the rate of increase in the area of
distinguishable precipitation shifts is larger in CESM1 (39%/50
years) than in FLOR (27%/50years) (Fig. 2), consistent with the
stronger RCP forcing in CESM1.

As is the case for annual mean, the projected shifts in
precipitation mean state for seasonal means (NDJFMA and
MJJASO in Supplementary Figures 4 and 5, respectively) are
similar between the CESM1 and FLOR ALLFORC ensembles.
Furthermore, the projected shifts for seasonal means also
resemble those for annual mean (see Fig. 1), with the global-
scale “wet get wetter, dry get drier” pattern (i.e., a general
moistening over high latitudes and tropical oceans and a general
drying over subtropics and middle latitudes). However, noticeable
differences exist among the seasonal and annual results. Overall
on the global scale, following the seasonal migration of the
precipitation climatology, the global meridional moistening-
drying alternating pattern shifts slightly northward in MJJASO
compared to NDJFMA (Supplementary Figures 4 vs 5). This
geographical northward shift of precipitation changes leads to
contrasting trends between MJJASO and NDJFMA and the
resultant weak annual trend over regions near the moistening-
drying transition zone. For example, over central-western North
America and central-southwestern Eurasia, a drying trend is
projected during MJJASO (Supplementary Figure 5), in contrast
to the moistening trend during NDJFMA (Supplementary
Figure 4); as a result, the annual mean trend (Fig. 1) over these
regions is relatively weak. In addition, over monsoon regions such
as southeast Asia and southeastern South America, the seasonal
precipitation shifts tend to show opposite signs between

Table 2 Fraction (%) of the global area (weighted by latitudes) with distinguishable shifts in annual/NDJFMA/MJJASO
precipitation mean state, respectively

GFDL FLOR 35-mem ALLFORC RCP4.5 NCAR CESM1 35-mem ALLFORC RCP8.5

Land Ocean Total Land Ocean Total

2000–2009 42.8/40.0/34.2 40.8/33.5/39.8 41.4/35.3/38.2 40.3/29.8/29.1 33.2/24.0/32.4 35.5/25.9/31.3
2010–2019 54.5/49.5/47.8 49.2/41.8/48.5 50.7/44.0/48.3 55.7/48.8/46.2 43.4/35.6/44.1 47.4/39.9/44.8
2020–2029 59.9/56.6/55.3 58.8/52.0/57.2 59.1/53.4/56.7 65.6/60.7/56.7 56.1/49.4/54.6 59.2/53.1/55.2
2030–2039 65.8/63.2/59.9 62.3/56.8/61.7 63.3/58.7/61.2 73.5/69.7/63.0 63.7/58.3/64.8 66.9/62.0/64.2
2040–2049 70.8/66.0/65.1 66.7/60.8/67.0 67.9/62.3/66.4 79.0/75.1/69.7 72.4/65.6/73.2 74.5/68.7/72.1
2050–2059 84.2/80.6/74.5 77.6/72.3/79.2 79.8/75.0/77.6
2060–2069 86.4/84.2/79.0 80.8/78.0/83.8 82.6/80.0/82.2
2070–2079 88.3/86.9/82.3 84.1/81.1/85.5 85.5/83.0/84.4
2080–2089 89.1/87.9/83.3 86.3/84.2/87.4 87.2/85.4/86.1
2090–2099 90.0/89.8/84.1 87.1/84.9/88.6 88.1/86.5/87.1

The distinguishability of externally forced shifts in precipitation mean state (relative to the 1950–1999 mean climate) is estimated against internal climate variability in fully coupled control simulations
(see Methods for more information). Results are shown for the two ALLFORC ensembles.
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NDJFMA and MJJASO, and the annual precipitation shifts are
dominated by the shifts during the monsoon season (e.g.,
MJJASO for southeast Asia and NDJFMA for southeastern South
America).

The distinguishability of the anthropogenic shifts in precipita-
tion mean state for both NDJFMA and MJJASO (also DJF and
JJA, not shown) exhibits a global pattern similar to that for the
annual mean state (compare Fig. 1 with Supplementary Figures 4
and 5), with the earliest distinguishable shifts emerging in high
latitudes, eastern subtropical oceans and equatorial Pacific.
However, a close comparison reveals that the fraction of the
globe with distinguishable anthropogenic shifts is slightly larger
for the annual precipitation mean state than for the seasonal
precipitation mean state, especially during early decades (by
about 5–10% larger than NDJFMA and 2–4% than MJJASO
during 2000–2050, see Table 2). This earlier distinguishability for
the annual precipitation mean state is consistent with its overall
stronger signal-to-noise ratio during early decades (compare
Fig. 3a, b, Supplementary Figures 6a, b and 7a, b), which arises
mainly from the difference in the noise. While the signal for the
annual precipitation mean state is simply the average between
those for NDJFMA and MJJASO, the annual noise is weaker than
the average between the two seasonal counterparts over most of
the globe (Fig. 4), leading to the overall stronger signal-to-noise
ratio for the annual precipitation mean state during early decades.
A similar difference is identified between the 6-month (NDJFMA
and MJJASO) and 3-month (DJF and JJA) seasonal means, with

the latter having a slightly stronger noise and weaker distinguish-
ability (not shown). Note that this difference in signal-to-noise
ratio gets smaller as the signal grows with time (Table 2).

Despite the overall earlier distinguishability of anthropogenic
precipitation shifts in annual vs seasonal means, there are
different stories over certain regions. For example, over middle
latitudes (e.g., central-western North America), opposite pre-
cipitation shifts of similar magnitudes are projected between
NDJFMA and MJJASO; as a result, anthropogenic shifts in the
annual precipitation mean state are very weak and thus less
distinguishable. Over some monsoon regions such as southeast
Asia and southeastern South America, the annual precipitation
shifts and their distinguishability are dominated by (and slightly
weaker than) the monsoon season. Specifically, the annual
moistening over southeast Asia follows MJJASO (and JJA) and
is distinguishable during 2000–2040 (about 2040s in CESM1 and
2000–2030 in FLOR), while over southeastern South America the
annual moistening follows NDJFMA (and DJF) and is distin-
guishable during 2000–2030 (also slightly earlier in FLOR than
CESM1). Note that over southeast Asia for the MJJASO (and
annual) precipitation mean state (Fig. 1 and Supplementary
Figure 5), FLOR projects a continuous moistening that becomes
distinguishable around 2000–2030, while CESM1 first projects a
distinguishable drying during the 2000s and then a distinguish-
able moistening during the 2040s. The drying in CESM1 is likely
caused by anthropogenic aerosol forcing (cooling) that peaks
around 201024, and the subsequent moistening is due to the
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continuously increasing radiative forcing associated presumably
with greenhouse gases25–28 (as in FLOR).

Besides precipitation, we have also repeated the same
distinguishability analysis for PmE—the net water flux at the
surface. In both models, projected shifts in PmE mean state show
very similar evolution to those in precipitation mean state on the
global scale, and their distinguishability is also similar (Supple-
mentary Figure 8 vs Fig. 1 for annual, Supplementary Figure 9 vs
4 for NDJFMA, Supplementary Figure 10 vs 5 for MJJASO;
Supplementary Table 1 vs Table 2). This similarity suggests that
changes in PmE are largely dominated by precipitation instead of
evaporation. However, there are some land regions that exhibit
notable differences between the projected shifts in precipitation
and PmE, especially during MJJASO. For example, over central
North America and central-western Eurasia during MJJASO,
projected shifts in precipitation mean state (Supplementary
Figure 5) are mostly weak and indistinguishable from internal
climate variability by 2050, but projected shifts in PmE mean
state (Supplementary Figure 10) show broad future drying that is
distinguishable as early as 2000–2020. With weak changes in
precipitation, the PmE drying during MJJASO arises from a
stronger increase in evaporation, which is likely supported by net
water storage from the PmE moistening during NDJFMA (see
Supplementary Figure 9). Because of the opposite shifts between
MJJASO and NDJFMA, the projected shifts in annual PmE mean
state are rather weak and hardly distinguishable over these broad
land regions (Supplementary Figure 8). As a result, the fraction of
the global area with distinguishable shifts in the annual PmE
mean state is not noticeably larger than that in the seasonal mean
state during early decades (Supplementary Table 1) despite the
overall weaker noise for annual PmE (Supplementary Figure 11),
in contrast to the case for precipitation. Nonetheless, this
relationship among the annual and seasonal distinguishability
for PmE is still consistent with the associated signal-to-noise ratio
(not shown).

Long-term projections. For CESM1 in response to the RCP8.5
emission scenario, the projected changes in precipitation mean
state after 2050 exhibit a similar spatial pattern to that during the
2040s, but increase in magnitude with the imposed radiative
forcing29 (Supplementary Figure 12). By 2100, distinguishable
shifts in precipitation mean state are projected over about
86–88% of the globe (Table 2 and Fig. 2). The small fraction of
the area with indistinguishable shifts is primarily the transition
zone between moistening and drying, where the anthropogenic

changes are weak. Similar results are also found for PmE (not
shown).

Origin of precipitation low-frequency internal variability. we
finally investigate the origin of precipitation low-frequency
internal variability. Repeating the distinguishability analysis
with the CESM1 atmosphere/land-only control simulation with
fixed boundary conditions (as opposed to the fully coupled
simulation, see Methods for more details), we find very similar
results (Fig. 1a, c, Fig. 2, and Supplementary Figures 3a, c, 4a, c
and 5a, c). A direct comparison of precipitation low-frequency
internal variability between the two control simulations shows
that precipitation internal variability has comparable magnitudes
over most of the globe except for the tropics and subtropics
(Fig. 5a). This result suggests that over most land areas and
middle-to-high latitude oceans the variance of precipitation low-
frequency internal variability arises primarily from internal
dynamics of the atmosphere and land–atmosphere interactions,
while in the tropics and subtropics ocean dynamics contribute
substantially (e.g., > 60% in the tropical Pacific)30. A further
comparison between the fully coupled and the slab ocean (with
fixed ocean heat transport and no active ocean dynamics) control
simulations (Fig. 5b) reveals that ocean dynamics in the tropics
and subtropics can amplify precipitation low-frequency internal
variability mainly through ocean–atmosphere thermodynamic
coupling (i.e., heat and moisture exchange), but in the equatorial
Pacific, ocean–atmosphere dynamical coupling (i.e., momentum
exchange) is also required. These results highlight that pre-
cipitation low-frequency internal variability has very limited
predictability (even in the tropics and subtropics) owing to the
control of atmospheric internal dynamics and land–atmosphere
interactions and can impart large uncertainties to the near-term
(up to 50 years5, 6 or even longer) projections of precipitation.
However, we use large model ensembles to demonstrate that,
despite these large uncertainties in total precipitation changes,
anthropogenic shifts in precipitation mean state can be dis-
tinguished from natural climate variability over most of the globe
by the middle of the current century.

Discussion
In our simulations, anthropogenic shifts in precipitation mean
state are already distinguishable from natural climate variability
over about 36–41% of the globe during the 2000s relative to the
1950–1999 climate. These earliest distinguishable signals include
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a moistening over high latitudes and equatorial Pacific and a
drying over eastern ocean basins near subtropical Highs. Over
high latitudes and eastern subtropical oceans, the earliest distin-
guishability arises mainly from the weak internal climate varia-
bility (so that even small signals can readily emerge), while in the
equatorial Pacific it is primarily due to the strong moistening
signal.

In the tropics, the early emergence of an anthropogenic signal
in precipitation mean state is similar to that in surface tem-
perature reported in a number of previous studies31, 32, but for a
different reason. The early emergence of anthropogenic warming
in the tropics results primarily from the relatively weak internal
variability in surface temperature, while the early emergence of
anthropogenic moistening there arises mainly from the relatively
strong signal (since the associated internal variability is strong).
Over high latitudes (particularly the northern hemisphere), the
early emergence of an anthropogenic signal is projected for pre-
cipitation, but not for surface temperature. This difference is also
due to the relative amplitude of internal climate variability: the
strong internal variability in surface temperature delays the
emergence of anthropogenic warming (despite the well-known
polar amplification).

Our findings highlight the substantial impacts on future pre-
cipitation mean state that result from anthropogenic emissions.
On the global scale, more than 60% and 85% of the globe is
projected to experience distinguishable anthropogenic shifts in
precipitation mean state by 2050 and 2100, respectively. On
regional scales, anthropogenic signals with early distinguishability
are projected for several land regions, such as the moistening over
southeastern South America10, northeastern North America and
northern Eurasia during boreal cold seasons and the moistening
over southeast Asia and the drying (in PmE) over central North
America and central-western Eurasia during boreal warm sea-
sons. These anthropogenically forced changes in precipitation
mean state suggest that future hydrological extremes will occur
around a shifted mean state that can intensify their strength (e.g.,
floods/droughts over wetter/drier mean state), therefore pre-
senting severe challenges for both ecological and social
systems33, 34.

Methods
Models and experiments. The three state-of-the-art large ensembles analyzed
here are conducted with two global coupled climate models, the FLOR flux-
adjusted model18 developed at the GFDL and the CESM135 developed at the
NCAR. The flux-adjusted FLOR employs fixed anomalous enthalpy, momentum,
and fresh water fluxes to the ocean to bring its long-term climatology of sea
surface temperature and wind stress closer towards observational estimates over
1979–2012; as a result, the climatology of other fields including precipitation and
the atmospheric teleconnections have also been improved10, 18, 36. The GFDL
FLOR has a horizontal resolution of approximately 0.5° for the atmosphere and
land components and 1° (telescoping to 0.333° near the equator) for the ocean and
sea ice components, while the NCAR CESM1 has a nominal horizontal resolution
of 1° for all model components (atmosphere, ocean, land and sea ice). Note that
both models have much finer spatial resolution than those used in some previously
published large model ensembles (about 2–3°)5, 6.

Two of the three large ensembles are performed with the FLOR, flux-adjusted
version. The first ensemble has 35 members driven by identical observed estimates
of both anthropogenic and natural forcing before 2005 and RCP 4.5 emission
scenario37 thereafter (termed ALLFORC), while the second ensemble has 30
members driven by identical observed estimates of natural-only (volcanic and
solar) forcing before 2005 and solar-only forcing (quasi-11-year cycle) thereafter
(anthropogenic forcing fixed at the 1941 level) (termed NATURAL). Both
ensembles simulate the period from 1941 to 2050, except for five ALLFORC
members covering 1861–2100. Members within each ensemble start from different
conditions that are briefly described as follows: the five long members start from
different years of a 3500-year preindustrial control simulation (Year 101, 141, 181,
221, and 261); the remaining 30 ALLFORC members and the 30 NATURAL
members share the same initial conditions that are created by shuffling the 1940-
and 1942-atmosphere/land states and 1941-ocean/sea ice states of the five long
members: the first (second, third) 10 members start from the 1941-ocean/sea ice
state of the first (second, third) long member combined with the 1940- or 1942-

atmosphere/land states of the five long members. We allow the model to adjust to
the new initial conditions for the period 1941–1950, and only analyze model output
after 1950.

The CESM large ensemble analyzed here has 35 members17. It simulates the
period of 1921–2100, except for one member starting in 1850. All members are
subject to identical observed estimates of historical (anthropogenic and natural)
forcing before 2005 and RCP8.5 emission scenario37 thereafter, but differ in their
initial conditions (also termed ALLFORC; note its stronger RCP radiative forcing
than FLOR ALLFORC). The long member (1850–2100) is initialized from year 402
of a 2300-year preindustrial control simulation, while the remaining members
branch off from the long member in year 1921 with round-off level differences
added only to the air temperature field. Consistent with the FLOR ensembles, we
only analyze model output after 1950.

Besides the three large ensembles of the climate change experiment, four
preindustrial control simulations are also analyzed. These simulations include the
aforementioned 3500-year FLOR and 2300-year CESM1 fully coupled control runs,
a 2600-year CESM1 control run only using its active atmosphere/land components
driven by fixed boundary conditions (monthly mean sea surface temperature and
sea ice averaged over years 402–1510 of the fully coupled control run) and a 1000-
year CESM1 control run using its active atmosphere/land components coupled
thermodynamically (via heat and moisture exchange, no momentum exchange)
with a slab ocean. The slab ocean has a temporally constant but spatially varying
depth that is set to be the climatological ocean mixed layer depth in the fully
coupled control run. In addition, a heat flux adjustment, derived also from the fully
coupled control run38, is added to the slab ocean to compensate for the lack of
active ocean dynamics; this heat flux adjustment varies only from month to month
(not year to year) and is employed to drive the slab ocean surface temperature
climatology towards that in the fully coupled control run. These long control
simulations exhibit more or less climate drifts owing to models’ radiative
imbalance. The drifts are estimated using a low-pass filter with a cutoff period of
200 years and subtracted from both the control simulations and the corresponding
large ensembles. Although we find that removing the model drifts does not affect
our conclusions, here we present the results with model drifts removed. These long
control simulations will be used to estimate low-frequency (decadal and longer)
internal climate variability.

Model evaluation. The performance of the two models in simulating precipitation
changes is evaluated against two observational products of global land precipita-
tion, the Climate Research Unit at the University of East Anglia, version 3.24.0139

and the Global Precipitation Climatology Centre dataset, version 740, both at 0.5°
resolution. Here we compute precipitation changes between the last 10 years
(1996–2005) and the first 46 years (1950–1995) during 1950–2005, and compare
observations with individual members of the two ALLFORC ensembles. All model
outputs are interpolated (with a globally conservative remapping method) onto the
observational grid before the comparison. If the observed change in one grid box is
within the range of those simulated by the 35 ALLFORC ensemble members, we
consider that the model is consistent with observations in that grid box. The
evaluation is performed for annual, NDJFMA, and MJJASO (see Supplementary
Figures 1 and 2).

Distinguishability. We refer to a change in ensemble-mean, decadal-mean pre-
cipitation as “distinguishable” if the change lies outside the bounds of what one
would expect from internal climate variability as estimated from multi-millennia
preindustrial control simulations. Internal climate variability is estimated with a
grid-scale Monte Carlo approach. For each control simulation, we do the following:
at each grid point we first randomly select a 10-year period (to mimic any decade in
the period 2000–2050) and a second non-overlapping 50-year period (to mimic
1950–1999), and then compute the difference between the time-mean of the 10-
year period and the time-mean of the 50-year period—this difference results only
from internal climate variability. We repeat this N times (the value of N is
described below) to form the grand ensemble of these differences and compute the
ensemble average. We then repeat the above process 5000 times to create a dis-
tribution of such ensemble-mean differences that could occur simply by chance
from internal climate variability. We use N= 30 when evaluating the projected
changes in the 30-member NATURAL ensemble, and N= 35 when evaluating the
projected changes in the 35-member ALLFORC ensembles. The range of the dis-
tribution is used to test the distinguishability of shifts in precipitation mean state
projected by the ALLFORC and NATURAL ensembles: shifts outside the range are
attributable to external (anthropogenic or natural) forcing and defined as
distinguishable.

We choose 1950–1999 as the reference period for two reasons. First, the FLOR
ensembles start from year 1941 and the first 10 years of simulation are treated as
model adjustment to initial conditions; second, future changes relative to this
recent past climate are more relevant for climate mitigation and adaptation
(compared to changes relative to a farther past climate). In assessing the
distinguishability of anthropogenic changes in future projections, we focus on the
decadal time scale because decadal variations of precipitation (e.g., decadal
drought) can impose drastic impacts on environment and society1–3, 41.
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Sensitivity of distinguishability to ensemble size. We examine the sensitivity of
the distinguishability analysis to the ensemble size. The same distinguishability
analysis is repeated for a subset of the two 35-member ALLFORC ensembles,
including sets of 5, 10, 15, 20, 25, and 30 ensemble members (starting from the first
5 members, and then adding 5 members incrementally). The results are shown in
Supplementary Figure 13. The area of distinguishable shifts in precipitation mean
state during the same decade increases with the ensemble size (as expected);
however, this increase gets weaker as the ensemble size grows, especially when it
exceeds 25 members. This sensitivity test suggests that our distinguishability results
using the 30- and 35-member ensembles are robust.

Time of emergence. The time of emergence of anthropogenic shifts in pre-
cipitation mean state is defined as the decade when projected precipitation changes,
in the ALLFORC ensemble but not the NATURAL ensemble, first become dis-
tinguishable and remain so thereafter for at least two decades. Note that 2040s for
FLOR and 2090s for CESM1 are not defined, since no projections are available after
2050 for FLOR and 2100 for CESM1.

Code availability. All relevant codes used in this work are available, upon request,
from H.Z. (honghaiz@princeton.edu).

Data availability. The NCAR CESM1 data are available at http://www.cesm.ucar.
edu/projects/community-projects/LENS/. All relevant data associated with the
GFDL FLOR are available, upon request, from T.L.D. (tom.delworth@noaa.gov).
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